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ABSTRACT

This study analyzes the statistics of sensor data obtained from the ob-

servations of artificial satellites. The effect of these statistics on the

estimation of the orbital elements has been evaluated.I
Several techniques for removal of the actual orbit from the observa-

tions to derive residuals have been investigated. The residuals have

been obtained using both polynomial fitting with and without autoregressive

scheme. From the satellites considered, no consistency was apparent

in the magnitude of the variances of the individual parameters. How-

ever, a consistency was noted in the skewness of the residual. Com-

puter programs have been developed for the determination of the statis-

tics of the orbital elements from observation data. The study shows

that the variances of the orbital elements are functions of the variance

of the observations, the time of observation and description of the mo-

tion of the satellite. Furthermore the variance of any orbital

elements is minimum if the sum of the variance of the observations at

a given time is ininimum for a specific computational procedure of the

orbital element from observations.

The behavior in the statistics of the orbital elements exhibits a consist-

ency in the measure of skewness and excess. Since these quantities are

normalized with respect to the standard deviations it appears that a bias

is introduced in te computation procedure. Thus, the problem of ob-

taining accurate position prediction of artificial satellites is one of

interpl4 between the quality of observations and an analytical description

of the motion of the satellite. How to trade these factors depends upon

the time allowed for deriving the orbit from observations.
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INTRODUCTION

This final report summarizes the results of a study on the error of

orbital estimation from observed data performed by the Radio Corpora-

tion of America for SPO 496L Space Track R&D facility under Contract

I AF19(604) -8041.

Determining accurate orbits for an artificial satellite has presented a

new problem in celestial mechanics. To imply that accurate positional

information of an orbiting body can be obtained by more accurate obser-

vation is only partially correct. There is need for an analytical theory

that would represent the motion of the vehicle with an accuracy consis-

tent with the accuracy of the observations.

This study was concerned mainly with the accuracy of the observationsIand their effects on the orbital elements. More specifically, the study

was devoted toI
(1) The analysis of the statistics of satellite tracking observations

using data from tracking and surveillance radars and Baker-

Nunn cameras,

(2) The investigations of the statistical and dynamical assumptions

governing the orbit computation based on the Herrick-Gibbs

jmethod and differential correction,

(3) The analysis of the error propagation from observations to

orbital elements following the Herrick-Gibbs method, ;

(4) The investigation of intermixing different types of data and

criteria.

xi
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Determination of the statistical quality of satellite tracking observations

was conducted by gathering satellite tracking data essentially from the

Millstone Hill Radar and AN/FPS-49. This analysis is contingent on

the removal of the actual orbit from the observations. Several tech-

niques were employed. Section 1 of this report discusses these methods;

namely, simulation, differential correction, and polynomial smoothing

with and without an autoregressive scheme. Each of these methods re-

quires great care in its application, and the statistics gathered should

not be regarded as absolute.

The orbit removal technique depends upon assumptions. To determine

whether the assumptions adequately describe nature, it is necessary to

look at the results of the orbit removal-statistical analysis procedure.

There are two types of tests that may be applied. First, it may be

noted whether the statistics are self-consistent, i. e., is a different

statistical behavior for a given sensor's observations obtained on dif-

ferent satellites?

The second test is the "how well does it work?" type. Since the end

product of the statistical analysis is to be a scheme for precision deter-

mination, estimates of sensor statistics may be used to construct an
"optimum estimator, " and to test the orbit so estimated against what-

ever high quality observations are available.

A large number of restrictions are placed on the use of differential

correction. Without drag correction the observational span must be

restricted to a few days, and, in any case, to a few weeks. A very

limited number of observations from each sensor must be used and

the relative quality of observations from different sensors must be

known. Furthermore, a fairly large number of observations is neces-

sary in order to obtain statistically stable residuals.

xii
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These restrictions, of course, greatly limit the number of satellites

to which this technique can be applied. However, there will probably

be some satellites with sufficient concentration of data. For these

satellites, the amount of computation necessary is large, especially if

the iterative procedure, suggested in subsection 1.2.1, is applied. An

alternative approach to the orbit removal problem is polynomial smooth-

ing which requires much less computation.

The simpler method of polynomial smoothing requires concentrated

data. This method, which has been applied to Millstone data, has been

reasonably successful. However, two procedures must be noted. In

the first place, the observations to be reduced have to be taken over a

time interval limited by the accuracy of the satellite theory. For ex-

ample, if it is desired to analyze range observations from Millstone

which have a standard deviation on the order of one kilometer, then

these observations, plus any others which are used to establish the

orbit, must cover a time span less than that over which the satellite

theory is accurate to, say, one-half kilometer. This time span, even

for a high satellite, is probably not much more than a few days at the

most.

Secondly, using observations from different sensors without properly

weighting them should be avoided. Since the statistical analysis to be

performed is a prerequisite to the determination of weights, it seems

best to perform the correction on observations made by a single sensor.

A disadvantage of the polynomial fitting is that, in the topocentric carte-

sian coordinates, all the parameters are smoothed by a same degree

polynomial. The transformation to cartesian coordinates is an attempt

to obtain uncorrelated residuals. With the autoregressive scheme em-

polyed in conjunction with the polynomial, the smoothing is done directly

on the radar parameters. Each one can then be fitted by a different.

optimum degree of polynomial. The satellite observations handled by

xiii
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this method indicate that the residuals of the radar parameters were

uncorrelated.

In the process of this investigation it was found that the differential cor-

rection procedure used for astrodynamical data reduction is to be re-

garded as a method of solution of the unweighted least square problem

(Ref. 2). It was also found that the statistics of the residuals exhibit

non-zero third and fourth moments. It can be shown, using the fitting

of observations by a trend and autoregressive scheme, that best esti-

mators for predicting orbital elements can be obtained with independent

estimators of the observations (Ref. 10). Expressions to obtain the

statistics of the osculating elements and error propagation have been

derived analytically. Their usefulness is limited due to the cumbrous

formula. A computer program has been devised to derive the statistics

of the osculating elements. This program utilizes the statistics of the

observations, and the Herrick-Gibbs method. It gives the moments of

the osculating elements.

xiv
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SECTION 1

SMOOTHING AND DATA ANALYSIS

To determine the statistical character of electronic or optical observa-

tions of artificial earth satellites, it is necessary to isolate the observa-

tional errors from the "ideal". observations. The observations may be

of slant range, azimuth and elevation, or of right ascension and declina-

tion. Therefore, one must determine, implicitly or explicitly, the true

orbit of the satellite, calculate from this orbit the values which each

sensor should have observed (the ideal observations), and subtract the

ideal from the actual observations to obtain the errors.

The ideal observations may be determined by standard astrodynamical

methods if the satellite's orbit is known. However, in order to use an

orbit to obtain accurate observational errors, it is necessary to know

the orbit with extremely great precision. Since the orbit is usually de-

termined by applying a differential correction reduction on various

observations, certain procedures must be avoided in this reduction or

the "observational errors" obtained become meaningless.

1. 1 DETERMINATION OF PARAMETRIC STATISTICS

1. 1. 1 DESCRIPTION OF METHODS

The inherent statistics associated with any observation parameter ob-

tained from the sensing equipment should be fully understood, together

with a knowledge of their magnitudes, limitations and model assump-

tions presumed.

I 1
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These statistics could be obtained either from a data analysis study of

a simulated target or from actual satellite observations. Both techniques,

unfortunately, have their own advantages and disadvantages.

1.1.2 SIMULATION STUDY

Parameter statistics are sometimes gathered by means of simulated

targets. For electronic sensors, signals representing those expected

from an actual satellite may be introduced at the front end of the re-

ceiver. When this is done, the orbit removal problem becomes trivial,

for the ideal observations are determined by the "orbit" which was

simulated.

Besides reducing the problem of orbital removal to a purely numerical

one, the technique of target simulation has several other important ad-

vantages. As much statistical data as desired may be gathered, merely

by replaying the target through the sensor-computer system. Further,

the quality of the observations may be calculated as a function of signal

strength. Another important characteristic is that simulation offers

a powerful tool for separating the random and systematic components

of error.

The chief disadvantage of simulation is that one cannot be sure all

sources of error are included. Propagation errors, ground reflections

and target scintillation are usually ignored. Furthermore, special

equipment used for generating the signal may introduce unwanted errors.

In spite of these limitations, it is felt that statistical results gathered

from a sophisticated simulation program should provide enough infor-

mation on the character of observational errors to greatly simplify the

analysis of tracking data. Unfortunately, extensive simulation has

been carried out for very few sensors.
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1. 1.3 TRACKING DATA ANALYSIS

I To obtain meaningful statistical information from actual satellite obser-

vations, a large number of observations must be available. However,

because of the errors, no possible satellite orbit will exactly satisfy all

of the observations. Thus, in order to estimate the elements of theIorbit, some criterion is needed for closeness of fit of actual and ideal

observations. This criterion is related to the mathematical model

adopted for the errors, in the sense that different models give rise to

different criteria for efficient estimators of the elements, and the dif-

ferent estimators will usually give rise to different sets of observational

residuals. If an error model which does not adequately describe the

character of the errors is used, the residuals obtained will be signifi-

cantly at variance with both the adopted and the true model. The analy-

sis of satellite tracking data may be regarded as an iterative procedure.

In this procedure an orbit is determined which minimizes a criterion

based on the assumed error model and the residuals are tested against

the model. A good first approximation is needed, since "convergence"

is rarely assured.

1. 2 DIFFERENTIAL CORRECTION

11.2.1 DESCRIPTION OF MODEL FOR DIFFERENTIAL CORRECTION

The correct selection of an error model to best describe the character

Iof the errors is extremely important if the residuals are to have signifi-

cant meaning. The simplest error model consists of the following

1 assumptions:

1(1) All observational errors are Gaussian random variables

(2) All errors are uncorrelated

(3) All errors have zero means (observations are unbiased).

3



I

With this model, the most "efficient" estimator is the rigorous least

squares estimator. An exacting discussion on the most "efficient"

estimator is given in Ref. 2. The estimator picks out that orbit which

minimizes the sum of the squares of the weighted residuals, where the

weight for a given residual is the inverse of the standard deviation of

the observational error. To actually compute the orbital element esti-

mates, a nonlinear system of equations must be solved. Differential

correction is an iterative technique for solving these equations. (See

Ref. 1, Z and 3.)

As mentioned,the weights to be used with a differential correction de-

pend upcnthestandard deviations of the errors. Since these standard

deviations are to be obtained by the statistical analysis which follows

the orbit removal, the need of an additional assumption describing the

relative sizes of the error is apparent. This assumption is crucial,

and will be discussed in detail in subsection 1.2.3.

1. 2. 2 THEORETICAL LIMITATIONS OF DIFFERENTIAL CORRECTION

To obtain meaningful residuals, the differential correction procedure

must not introduce theoretical errors, i. e., the correction must select

the true least squares estimate of the orbit to rather high accuracy. In

particular, this requirement imposes the following restrictions on the

procudure:

(1) Quantities derived from observations must be corrected if

their uncertainty gives rise to significant variance in the

residuals

(2) The time span of the observations must be no greater than the

span over which the satellite theory is of "sufficient accuracy"

(3) The loss of accuracy involved in computing partial derivatives

from a Keplerian ellipse assumption must be investigated

4
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(4) Great care should be taken in the numerical processes, especial-

I ly the matrix inversion.

The first restriction can best be explained by a numerical example. One

effect of atmospheric drag is to reduce the period of a satellite. A typi-

cal value of this reduction is 10 - 8 days per revolution per revolution.

Suppose a preliminary estimate of the drag parameter has been made

which is sufficiently uncertain as to make the value of the period reduc-

tion uncertain up to 10- 9 days/rev2 . This, in turn, causes a variable

time uncertainty whose magnitude is given approximately by 10 "9 times

the square of the number of revolutions from the center time. For two

weeks of observations this amounts to a maximum time error of about

10 - 5 days, hence a maximum position error of about 6 or 7 kilometers.

Such an error is larger than the standard deviation of most observations;

therefore, it is necessary to correct the drag parameter as well as the

orbital elements. Indeed, with an uncertainty of 10 - 9 , drag corrections

are necessary whenever the observations span more than about three

days, or even less time if high-accuracy optical observations are to be

analyzed.

The second restriction refers to the state of the art. If exact initial

conditions of the satellite at some epoch are given and the position of

the satellite can be computed to an accuracy of 0. 2 km for only one

week in the future, then the observational span should be restricted to

about two weeks or less. This restriction, unlike the other three,

cannot be removed by improving the differential correction program.

The third restriction is, perhaps, less important than the others. The

differential correction procedure employs the partial derivatives of

ideal observations with respect to the parameters which are to be cor-

rected. These derivatives may be computed either numerically or

analytically. When analytical differentiation is employed, the

5
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derivatives are computed on the basis of a two-body Keplerian orbit.

This introduces a second order error into the estimates. The fourth

restriction is self-explanatory.

1.2.3 STATISTICAL LIMITATIONS OF DIFFERENTIAL CORRECTION

The properties which determine the degree of sophistication necessary

in the differential correction program have been examined. The type

of data to be used with the program is analyzed in the light of the as-

sumptions on the error model.

The assumption of Gaussian error distribution is not too critical. Actual

distributions of errors will not differ too much from the Gaussian, and

for these distributions the least squares estimator will still be highly

efficient. The assumptions of unbiased and statistically uncorrelated

observations are more important. If these assumptions are not satis-

fied, and in practice they may not be, the accuracy of the estimated

orbit is greatly reduced. For this reason, whenever there is a sus-

picion of such bias or correlation, the amount of data used from each

pass over each sensor should be restricted to a few points. In this

way, the bias may be treated as an addition to the random error, and

the effects of serial correlation are greatly reduced.

The assumption on the relative quality of observations is critical.

Briefly, the accuracy of an improperly weighted least squares estima-

tion is determined by the more grossly overrated observations. Thus,

if the data include several observations of very poor quality, these

observations must have corresponding low weights attached or they

seriously distort the residuals.

For this reason, if good a priori information on the relative quality of

the observations is not available, the differential correction should be

regarded as an iterative procedure, whereby the residuals are examined
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to determine new weights for the next correction. Such a procedure

has no guarantee of convergence.

1. 3 POLYNOMIAL SMOOTHING

The technique of polynomial smoothing can be used when compact sets

I of satellite observations are available. The polynomial smoothing con-

sists of finding those time polynomials of a specified degree which best

fit the azimuth, elevation and range parameters in the least square

sense. The polynomial smoothing technique is based on the same as-

sumptions that apply to differential correction. The former technique

gives a less optimum estimate but requires much less computation

than the latter. Polynomial smoothing is applicable only to radar

tracking data, whereas the differential correction technique may be

applied to a wide variety of observations. The observations need not

be taken at equal intervals of time.

1.3.1 DESCRIPTION OF POLYNOMIAL SMOOTHING

The polynomial smoothing technique consists of finding that poly-

nomial of a given degree which best fits radar observations of a given

type in the least squares sense. For example, to fit radar range with

a second degree polynomial, three quantities - C o , C1 , C2 - must

be found which minimize the expression, S:

1 S(c Cl I C 2 1 (R (t)-C 0 -CI t-C 2 t2 )2 WR(t)2

I t
where R 0 (t) is the observed range at time, t; WR(t) is the inverse of

the standard deviation; and the summation extends over all the obser-

vation times. This problem has a unique solution unless, of course,

there are fewer observations than constants to be determined. The

solution reduces to a linear system of equations. The application of

this technique to the problem of orbit removal is presently discussed.

I
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The range observations are the sums of the ideal observations plus

the observational errors. If the errors, in turn, are sums of a con-

stant bias, b, plus a purely random error, the observations may be

expressed as follows:

Ro(t) = RI(t) +b +R (t)

where R (t) is the random error. Subsection 1.3. 2 shows that, with a

proper choice of the polynomial degree, the curve fitted to the observa-

tions will closely approximate the sum of the ideal observations and the

bias. It is further shown in subsection 1.3.3 that this curve will not

approximate the random errors very well. Thus, the technique of

polynomial smoothing separates the observations as follows: the curve

fitted to the observations approximates the sum of the ideal observa-

tion and the bias; the residuals or differences between the observations

and the curve approximate the random errors.

1.3.2 THEORETICAL LIMITATION

The equations for the polynomial coefficients are linear, thus the

estimated coefficients are linear functions of the observations. This

implies that the curve of best fit to the observations is given by the sum

of the curves of best fit to the ideal observations, bias, and random

errors. Therefore, each component of the observations may be analy-

zed separately.

The curve of best fit to a constant bias is simply that bias itself. For

the ideal observations, assume that a polynomial of degree 'p is to be

fitted to range observations covering a time span, 2T . Let to be

the midpoint of this span. The ideal range in a truncated Taylor

Series expansion about to is:

8
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The first term on the right-hand side can be fitted exactly by a poly-

nomial curve of degree p. The second term, the remainder, involves
stthe (p+l)L- derivative of the ideal observation evaluated at some time,

t', between to and t. To determine how closely this term can be fitted

is an extremely difficult task, however its magnitude can be analyzed.

The magnitude of the remainder is less than:

I, I(P+I) I max TP I

(p+l) T

The derivate is maximized over the time interval, t-t < T. Thus,

if the radius of convergence of the Taylor S e r i e s is greater than T,

(Taylor S e r i e s converge uniformly), one can find a p such that the

remainder terms are sufficiently small. In practice, p can be chosen

so that the magnitude of the remainder term is a small fraction (one-

tenth or less) of the expected standard deviation of the observational

errors. Examples of the magnitudes of these standard deviations have

been computed and are given in Appendixes A and B.

To calculate the magnitudes of the derivatives, at least two schemes

are possible. They could be computed from the equations of ballistic

motion. In the LaGrangian equations of motion, the second derivatives

of range, azimuth and elevation are expressed in terms of their zeros

and first derivatives. An estimate of the zeros and first derivatives

can be obtained from the record. Differentiation of the LaGrangian

equations the proper number of times yields the desired result. This

approach rapidly gets out of hand, however, and its use is not recom-

mended.

9



The second scheme is more simple to perform but is subject to

numerical computation errors from an assumed orbit. An approximate

orbit from the record is determined. From this orbit the radar param-

eters at equally spaced time intervals are calculated. The derivatives

of these radar parameters are inferred. Since the orbit used is only

approximate, and the numerical differentiation introduces errors, the

resulting derivatives should be used with a safety factor on the maxi-

mum allowable remainder.

1.3.3 STATISTICAL LIMITATIONS

The polynomial coefficients are computed on the basis of noisy obser-

vations therefore they are subjected to random fluctuations. For the

same reason, the fitted curve is also subjected to fluctuations. If the

fluctuations in the curve are of the same order of magnitude as the

fluctuations in the observations, the residuals will bear little resem-

blance to the observational errors. When d large number of cbcerva-

tions is employed, the fluctuation in the curve becomes quite small.

In Appendixes A and B formulas and graphs for the ratio of the stand-

dard deviation of the curve to the deviation of the observations are

presented as a function of the degree of the polynomial, number of

points, and time. These graphs are derived on the basis of the as-

sumptions that the observations are uncorrelated, stationary, and

equally spaced in time. The non-stationary state of the cartesian

coordinates does not make them strictly applicable, but they are

nevertheless approximately correct.

A numerical example explains the reason the radar coordinate of low-

est standard deviation gives rise to distorted residuals. The following

table shows the true values of the satellite in radar and cartesian co-

ordinates and the radar standard deviations at a particular instant of

time:

10
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R E A, aR a j Ga X Y Z

800 300 450 .. 5 '/ ' °573'1719° 490 490 .400

I Now the standard deviations in X, Y, Z may be found as follows:

aX2 = (a R cos E cos A) 2 + (Ra E sin E cos A) 2 + (R aA cos E sin A 2

= 4.744 = (2.178)2

Similarly,

a 2 = (2.178) 2 and a 2  (1.429)2

Assume next that the standard deviations of the curves fitted to the

cartesian coordinates are each equal to one-twentieth of the standard

deviations of the observations. The table below shows these deviations

I and the corresponding deviations in the curves fitted to the radar coordi-

nates:

Xc Y Zc Rc Ec _Ac

0.109 0.109 0.071 0.101 0.005880 0.009010I{
g Then:

a Rc/aR = 0.04 aEc/aE = 0.103 aAc/aA = 0.052

Thus, although the curves were fitted equally well to the three carte-

1 sian coordinates, their resulting deviations in the radar parameter

have become unequal and distorted.I

I 11



1. 3.4 DEGREE OF POLYNOMIAL

A. A Priori

A priori knowledge of the degree of polynomial required to fit a given

set of observations can be obtained from the determination of polynomial

fitting to the true orbital path for the given length of observation time.

Although the true trajectory is unknown, a family of trajectories about

the ideal value can be investigated to determine the optimum degree of

polynomial required. The magnitude of the errors obtained by approxi-

mating the ideal trajectory with any polynomial is indicated in Appendixes

A and B.

For most satellites the Millstone Hill radar parameters can be approxi-

mated by a fourth order polynomial for observation times up to 5-1/2

minutes. Table A-1 in Appendix A indicates the time spread of the amount

of data acceptable for various deviations in the fit of different degree

polynomials to the ideal path of satellite motion.

B. A Posteriori (Orthogonal Polynomials)

Determining the polynomial degree may also be done a posteriori with

the use of orthogonal polynomials. The polynomials are described in

Ref. 4-,Ad only certain properties will be mentioned here.

The most important property of these polynomials is that they may be

used to determine the polynomials of best fit of several different degrees,

with a minimum of duplication. Closely connected with this property is

a simple statistical test (F-test) which may be made on the difference

between the variance of the residuals after fitting polynomials of succes-

sive degrees to the data. In this way, an a posteriori test of the signifi-
th ocance of the p order polynomial term may be made.
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Use of orthogonal polynomials has certain computational advantages

I over the usual polynomials. The advantages are most pronounced when

several different polynomial degrees are to be tested. These advantages

g are nullified, if an a priori determination of the degree has been made

or if the observations are not equally spaced in time, or if the observa-

tions are to be weighted unequally.

C. Variate Difference

The technique of applying the variate difference methods to the observa-

tions is considered in detail in Ref. 1. Basically it determines the degree

of the polynomial fit and also estimates the variance of the random com-

ponent by considering the stability of the forward differences of the param-

eters. It;assumes that the radar reports.are comosed of a systematic

and a random.component:

X t  -k AtK + t

1k=o

where p is the order of the time polynomial tobe estimated. Estimates

of the variance of the forward differences are obtained. This variance
th

of the random component decreases up to the p difference and then the

f variance should stabilize except for random fluctuations. These random

fluctuations could be due to a harmonic periodicity present in the resi-

Iduals.

1 1.4 AUTOREGRESSIVE SCHEME

The residuals obtained after fitting the optimum degree of polynomial

still exhibit a sinusoidal tendency. It can be shown that the fitting of the

optimum order polynomial plus an autoregressive scheme will better

describe the error process. In addition, this method gives rise to

independence between the observations for the cases considered (Ref. 10)o
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1. 4.1 DESCRIPTION OF AUTOREGRESSIVE TECHNIQUE

With the determination of the order p of the polynomial and its least

square coefficients, the residuals X t can be fitted by an autoregressive

scheme. The autoregressive scheme considered in Ref. 10 is of the

second order:

k= 2

a Xt I bt-k " Xt-k
k= 1

The coefficients bt_ 1, bt-Z are consistent estimators in the least

square sense. In addition to being consistent estimators, these least

square estimators are asymptotically best estimators. The solution

to the autoregressive difference equations has a harmonic solution which

could alter the behavior of residuals obtained from polynomial fitting

only.

The solution is given by:

= pt(C1 cos Ot + C, sin Ot)
xt t

Xt = C 1 11
t + C 22

t

depending on whether the roots of p 2 -b t_ bt 2 0 are imaginary

or real.

The particular solution takes the form:

J A.

j et-j+l
j=O

14 [1
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so that initially errors are independent. Once introduced into the proc-

ess, they forever exert their influence. For this reason, it was ex-

pected that residuals would be uncorrelated, the dependence tied up in

the initial observations and remaining uncorrelated throughout the proc.-

ess, and therefore tending to diagonalize the covariance matrix. An

estimate of the variance of the autoregressive scheme is

2  2 (1 -b 2 )

Xt "t (1+b2 ) (1-b2 2 - b1
2)

The residuals after trend and autoregressive fitting were considered

elements of et and assumed to be a stationary process up to second

order. Whereas only the second degree autoregressive scheme is

indicated in Ref. 10, the degree actually required can be estimated

utilizing similar methods to those used to determine the degree of the

polynomial via a variate difference method.

1. 5 EFFECT OF REFERENCE SYSTEM

There are various systems of coordinates in which the observation can

perhaps be smoothed better than in another system. The systems of

radar parameters do not behave like low order polynomials for any

length of time. In order to carry out polynomial smoothing on these

coordinates, it is necessary to resort to polynomials of very high degree -

perhaps, ten or twelve or more for a typical 5-minute pass. It is not

recommended that such high order polynomials be used, as they require

the solution of large scale systems of simultaneous equations. Such

solutions consume much time and storage and are of limited accuracy.

Another objection to high order polynomials is the loss of statistical

stability involved. Furthermore both a priori and a posteriori techni-

ques of estimating polynomial degree become questionable.
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Two solutions to this problem are known. Either a sequence of functions

may be found (linear and nonlinear) which fit the observations better than

polynomials (autoregressive scheme perhaps) or the observations may be

transformed to a form in which they are easily fitted by polynomials.

Unless differential correction is carried out it seems quite difficult to

measure the truncation errors associated with any smoothing other than

polynomial fitting. Furthermore, most smoothing functions will give

rise to nonlinear systems of equations which will involve a great deal

of machine computation.

1.5.1 POLAR VERSUS TOPOCENTRIC CARTESIAN REFERENCE

SYSTEM

Although the radar coordinates range, elevation and azimuth do not

behave like low order polynomials, the cartesian inertial and the topo-

centric cartesian coordinates of the satellite do. Thus the transforma-

tion from radar to topocentric coordinates produces records which are

very amenable to polynomial smoothing. Appendix A shows that, for a
th

wide variety of orbits, the truncation associated with a p degree poly-

nomial is a function only of the time interval, and that for typical radar

data, a fourth degree polynomial is sufficient.

The weights to be used with the cartesian coordinates depend upon the

standard deviations of the radar coordinates. Since these are unknown,

an iterative technique is employed. This technique has been programmed

for the IBM 7090 in Fortran language and performs the following compu-

tations.

Initially the standard deviation in range, azimuth, and elevation, and

the polynomial degree are assumed. The observations are entered and

transformed to cartesian coordinates. Weights for the cartesian coordi-

nates are found on the basis of the assumed radar deviations and the

formulas of linear error propagation. Then normal equations for the

polynomial coefficients are solved, residuals are computed and

16
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transformed into residuals in range, azimuth, and elevation. The stan-

dard deviations of these residuals are computed and compared with the

assumed values. If the discrepancy is large, the procedure is repeated

starting with the computation of weights, replacing the radar deviations

with the values just computed.

This program has been applied to several records. In all cases, con-

vergence has been achieved after two or three iterations. The final

residuals have not deviated significantly from the Gaussian (subsection

1.6.1). Serial correlations have been small for those coordinates with

relatively large standard deviations, but have been significant when the

deviations are small - usually in elevation. This need not contradict the

hypothesis of statistical independence, due to the poor statistical stability

in these residuals. In general, it isbelievedthat the residuals in those

radar coordinates with large standard deviations are close approximations

to the actual random errors, while, for the other coordinates, the stan-

dard deviations are probably reasonable, but the residuals themselves

are in error. An example of the statistical limitations and distortion of

errors is indicated in subsection 1.3.3.

1.6 DATA ANALYSIS

1.6.1 RADAR DATA FROM MILLSTONE AND MOORES TOWN

Samples of satellite observations from two different sites, Millstone

and the FPS-49 radar at Moorestown, were analyzed to determine the

distribution of the errors, and their correlation. The data supplied by

Moorestown were 10-second radar parameters for various satellites.

These satellites included 1959 Epsilon 1 and Iota 1, 1960 Zeta 1,

Zeta 2, and Nu 2, and 1961 Epsilon 1, Lamba 1, and Omega 1. The

Millstone data were 6-second semi-smoothed radar parameters from

1960 Epsilon 1 and Iota 1. Various degrees of polynomials were fitted

to the transformed cartesian coordinates. The statistics of the resulting

17



residuals of the radar parameters were obtained. From the satellites

considered, there appeared to be no consistency in the magnitude of the

variances of the individual parameters. A typical example is given for

1960 Epsilon 1 and shows the effect on the first four moments of fitting

different degree polynomials for each of the radar parameters. In

general, for range, azimuth and elevation the 0 values were between 2

and 3, this being a measure of the normality of the distribution. The

values of y obtained were consistently less than 1, i.e., the residuals

exhibited a tendency toward a slight skewness to the right for the bias.

For the four orders of polynomials fitted to 1960 Epsilon 1 the covariance

matrix remained relatively unchanged. It can also be seen that the

covariance was not a diagonalized matrix; there was a strong correlation

between range and the other two parameters. A usual assumption made

about radar data is that the parameters are uncorrelated to facilitate

easy inversion of a simple diagonal matrix. Whereas these residuals

with a polynomial fitting exhibited a marked correlation, when the radar

parameters are fitted with a polynomial plus an autoregressive scheme,

as indicated in Ref. 10, the covariance matrix obtained can be assumed

to be diagonalized. Also, the standard deviations of the radar param-

eters using the autoregressive scheme have been decreased. The

residuals, after fitting the autoregressive scheme, are shown in Figures

9to 11 of Ref. 10. There is an indication that a periodic trend in the

residuals is still present.

The serial correlation coefficients of the radar parameters indicated

that the residuals obtained were independent of the time of observation.

18
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1. 6.2 BAKER-NUNN SATELLITE TRACKING CAMERA

The Baker-Nunn tracking camera is especially designed for tracking

artificial earth satellites (Ref. 6). The camera is briefly described

as a three-axis Super-Schmidt f/l camera, with a focal length of 50 cm,

and a field of view 5 by 30 degrees, which is photographed on a 55-mm

cinemascope film about one foot long. Faint satellites are tracked to

obtain measurable images. When the tracking rate of the camera is the

same as the rate of the satellite, the satellite appears as a point image

on the film against a star trail background. The position of the satellite

is then determined by measuring the centers of the central breaks of

reference stars.

The number of observations in angular position that the Baker-Nunn

camera can acquire on one pass of a satellite depends upon the satellite's

altitudc and brightncss; Lut generally, two or three observations are taken.

For satellites that are high and bright, such as Iota 1, it is possible to

obtain ten sample observations in angular position. This is not a suffi-

cient number of observations to make a reliable statistical analysis.

There are several possible schemes for obtaining more sample observa-

tions, one of which is to analyze the residues of the observations made

on many passes of a given satellite with a particular Baker-Nunn camera;

but each pass constitutes a different experiment. It is reasonable that,

with each experiment, (in effect, measurements under different geome-

tries) stationary statistics cannot be assumed valid.

A second scheme that might be suggested is an ensemble of stations

making observations on a given satellite. This is not practically feasi-

ble. In addition, in analyzing the errors, the ensemble averages and

the time averages would have to be assumed the same. In either scheme,

the process is neither stationary nor ergodic.
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Because one is dealing with an experiment which involves so few sample

points and is devising experiments to increase the sample size,the assump-

tion of stationarity or ergodicity is established. However, this is not I
valid. The approach taken by the Smithsonian Institute for establishing

accuracies is quite therefore reasonable (Ref. 5).

The accuracies established for the Baker-Nunn camera were determined

as follows: Observations from stations were compared with respect to

a very accurately known orbit and the residues were analyzed.

Two types of data were analyzed: (1) field reduced observations and

(2) precisely reduced observations. The field reduced data are measure-

ments made by the observers at the stations and are subjected to personal

error. The field reduced positions are accurate to within 2-1/2 minutes

of arc in standard deviation and one-tenth second of time in standard

deviation.

Precisely reduced data are field data sent via airmail to the Photo-

reduction Division of the Smithsonian Institute in Cambridge, Massa-

chusetts and analyzed under elaborate laboratory conditions. Precisely

reduced data have an accuracy of two seconds of arc and 0. 001 second

of time in standard deviation.

1.6.3 MULTI-SITE INITIAL WEIGHTING

If an initial knowledge of the variance of the data can be estimated, then

it can be utilized for quicker convergence in the Fortran program for

the polynomial fitting technique as described in subsections 1. 3.4 and

1. 5. 1. The following technique has the advantage of obtaining an esti-

mate of the parameter variance of one site if the parameter statistics

are known for another site. The assumption made is that the variances

are unchanged when subjected to an orthogonal transformation. To carry

out this weighting, it is first necessary to obtain true or expected
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parameter values for azimuth, elevation and range. However, at any

time, for any satellite, these values are not known. In Ref. 7, equa-

tions are given for the determination of rectangular coordinates for a

satellite in a geocentric coordinate system. By reworking these expres-

sions, the following procedure is obtained for prediction of the satellite

parameters which should be observed at one radar at a given time, t,

when the parameters are known for some other radar atthat time, t.

The known inputs are the positions of the two radar sites R. i eithe

geocentric coordinates of each radar site, and the radar parameters

from both sites at corresponding times, (S i , h i , A.) = (slant range,

elevation, azimuth). (See Figure I-1. )

The subscript merely denotes from which radar site these parameters

have been observed. The basic equations for transferring the position

coordinates of a satellite, as observed from one site into those as

observed at a second site, are given as follows:

-sin1 (R 1 cos h1 )

(R[ = S(S+2R 1 sinhl)) I /

a1 = j--(hI +

The geocentric polar coordinates of the satellite are given by

rs = [R1 2 + S(S + 2R 1 sin h1 ] 1/2

cos 4s /1- (cos aI sin + sinaI cos 0I cos A1 )2

and also s0sin sin
s= Co s

Z3
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IAfter completing the transformation the geocentric cartesian coordi-

nates are given by

I = r cos Cos 0

Y = r cos sin 6

Z = r sin

These geocentric cartesian coordinates can now be converted, as

obtained from Site I data, into radar parameters as would be observed

I at Site 2.

S =JR2 - r. 2 [xR cos *2cos 02 + ysR2 cos 0?sin 6. + zR sin ~J

h 2 -- sin - irs 2 R 2
2 - $22]

I.

2 sin
rs

a 2 2(h2 + 0 2)

2  cos sin a cos @2

Thus, by considering the different radar sites and the preceding expres-

sions, values from one radar site can be used to predict corresponding

values for another site, say Millstone Radar. Also, observed values

at Millstone will be used to predict values for another radar. For a

given time interval-then, four sets of compatible data can be obtained.
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For a given time, t, an observed variance S2, can be obtained for these

data. To accomplish this the following information is considered.

It is known that the errors between the observed values and the expected

values are approximately Gaussian distributed, N(O, aR), where R is

observed value and 4 is the expected value.

a2R E([R- - E [R- [R 1)

Thus,

2 ZR-4aR

Thus,

(R- L) is N(O, aR)

For this reason, with S known, bounds on a can be obtained by em-

ploying the X distribution with n-l degrees of freedom given by

x = n S2

a

where n is the sample size.

2

These bounds on a can be used to obtain boundary equations (with an

attached degree of confidence) for polynomial smoothing as discussed in

subsection 1.3. 1.
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SECTION 2

ORBITAL COMPUTATIONS AND ERROR BEHAVIOR

Error analysis deals with the type of errors in the prediction and future

ephemeris implied by the expected errors in the sensor data. This con-

cerns the mathematical probability that the vehicle will be in an expected

spacial position at a given time.

Error behavior can be studied as a linear or a nonlinear problem. The

linear analysis is based on assumptions that the errors in the prediction

are linearly related to the errors in the input data. This is realistic if

the standard deviations of the data errors are extremely small and pro-

duce prediction functions with multivariate Gaussian distribution, with

their covariance matrices related by simple matrix multiplication in-

volving partial derivatives of prediction functions with respect to ob-

servations. The way the error analysis is performed depends upon the

distribution of statistics assumed and the dynamical assumptions applied

to the arc of trajectory during the period of observations. The first

section of this report dealt with various techniques for smoothing these

data. This section discusses the error behavior of the osculating ele-

ments and finally the ephemeris.

Statistical assumptions made about the radar parameters are that they

are independent, Gaussian, and can be expanded in a Taylor Series and

truncated after the linear terms without any loss in accuracy. Errors

are also assumed to be non-serially correlated and time invariant.

While several of these assumptions might hold for some radar observa-

tions so that a linear error analysis could be used for the osculating
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elements, the final elements would certainly not be independent but

would exhibit marked correlation. Some results obtained in the pre-

vious section tend to indicate that most, if not all, of these assumptions

should be considered open to suspicion. The only assumption that seems

to be allowed is that the time of observation is known nearly exact.

2. 1 OSCULATING ELEMENTS DETERMINATION

The initial point of the study of error behavior is the conversion of

three smoothed vectors into one smoothed midpoint velocity vector by

a method attributed to Herrick-Gibbs. This technique is employed by

Space Track for the conversion of radar data (Ref. 7).

An alternative method is to obtain the velocity vector directly from the

radar data. One of the useful by-products of the topocentric polynomial

smoothing is a measure of the midpoint three components of velocity

as coefficients of the first order terms in the polynomial and the accel-

eration as the second order terms. The statics of this velocity are also

easly available. Now that a position and a velocity vector are both

known for a common time, the osculating elements can be uniquely

determined (see Appendix D).

The smoothed radar data exhibited a certain amount of skewness and

non-normality and the radar parameters were definitely not independent.

There appears to be no serial correlation of the parameters and it was

not ascertained whether the covariances were time invariant. With this

knowledge of the statistics of radar smoothed data it was decided to in-

vestigate the error behavior of the osculating elements (1) on the basis

of linear independent errors and (Z) on error behavior in which the first

four moments of the input data were known with their cocumulants.

The radar parameters were expanded in a Taylor Series about their

means and the series truncated at fourth order terms. The method of

propagation of errors was similar to that of Ref. 11. It quickly became
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obvious that this was an unrewarding tedious task. The procedure was

reduced to only the first two moments and the covariance. The neces-

sary partial derivatives and formulas for the error prediction of the

osculating elements are indicated in Appendix E.

2.2 PREDICTION DETERMINATION

Error behavior of the final prediction was analyzed in Appendix E by

a method similar to that employed to compute the osculating element.

errors. The results obtained from the analysis of several satellites

indicated that the osculating elements were strongly correlated and

were not Gaussianly distributed (see subsection 2. 3). Error propaga-

tion for the first four moments was carried out to evaluate the four

moments of the cartesian coordinates but the covariance was approxi-

mated to second moments only. Only the first partial differentiations

were carried out in Appendix E due to their lengthy nature. All of the

partial derivatives have a periodic tendency which is non-decreasing

with time. The main fault of lengthy prediction time is due to the par-

tial derivatives of the spatial position with respect to the semi-major

axis 8r/8a.

Although this derivative was also periodic, the magnitude of this period

increased with time. When higher order derivatives are considered

they will be increasing with higher orders of time. Thus, prediction

error will increase with time. It might be predominant compared with

the errors introduced when considering a simple Keplerian system,

ignoring the effects caused by earth's oblateness, drag and several

other second order effects on the satellite.

2.3 NUMERICAL ERROR BEHAVIOR OF OSCULATING ELEMENTS

Samples of Millstone 6-second radar data for three different satellites

were subjected to the Herrick-Gibbs technique to determine a series

of midpoint velocity vectors throughout the observation time and, thence,
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the resulting osculating elements. Time spacing between each of the

three -position vectors selected for the Herrick-Gibbs technique was

varied from 6 to 60 seconds. This increase in the time interval con-

siderably reduced the variation of the midpoint velocity. The velocity

vector iscomputed from three weighted position vectors, the weights

being
H.

1d=Gi + --y
Yi

The time spacing is such that G. is orders of magnitude greater than
31

H./y. which is the component that considers the effect of the Keplerian1 1

motion. Since both G. and H. are functions of time, this magnitude dif-
1 1

ference can be reduced by increasing the time spacing. The longest

time spacing indicated from the Millstone sample data is approximately

four minutes and even with this length of time, the G. term suppresses

the Keplerian motion effect of Hi/yi 3 .*

The osculating elements were then fitted with unweighted polynomials,

the order of which was predetermined by the variate difference method

and the statistics of the residuals of these osculating elements were

derived. The complete computation procedure from radar parameters

- osculating elements - selection of degree of polynomial and statistics

of residuals has been programmed for the IBM 7090 in Fortran language.

The effect of increasing the time spacing of the data had the effect of

decreasing the standard deviation of the osculating elements, shown in

Figure Z-1 for three different satellite passes. The values of kurtosis

varied between 2 and 3 and the semi-major axis indicated slight skew-

ness to the right, while the inclination and eccentricity exhibited the

opposite effect, see Figure 2-2, 2-3, and 2-4. Whereas, the cross

correlation for the radar parameter could be considered negligible for

the given sample size, some of the osculating elements have a strong

correlation, particularly the semi-major axis, eccentricity and inclina-

tion angle.
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The partial correlation coefficients for the various time spacings

appeared to be relatively stable and show good agreement with the

simple cross correlation for both the radar parameters and the orbital

elements. The double sets of values shown for 1960 Epsilon 1 are due

to the correlation between two parameters, with one of the other two

parameters fixed.
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SECTION 3

CONC LUSIONS

This study has shown that the differential correction smoothing pro-

cedure is a solution of the generalized least square problem (Ref. 2).

The residuals obtained by fitting the observation with polynomial plus

an autoregressive scheme (Ref. 10) are uncorrelated and the standard

deviations of the radar parameters with the autoregressive scheme are

less than those obtained with polynomial fitting alone.

In the process of analyzing the behavior of the orbital elements it was

noted that the coefficient of skewness exhibits a degree of consistency

for different satellites and sensors. Furthermore it has been possible

to derive the variance of any orbital elements, as functions of the vari-

ance of the observations, the time of observation and description of the

motion of the satellite. It has been shown that the variance of any

orbital element is a minimum if the sum of the variances of the obser-

vations at a given time is a minimum for a specific computation pro-

cedure of the orbital element from observations. This indicates that

minimum variance orbital estimations are only relative minimums.

The behavior of the variance and skewness suggests that the computa-

tional procedure introduced a bias. The latter, in particular, cannot

be traced to a round-off error.

The problem of getting accurate position prediction of artificial satel-

lites is one of interplay between the quality of observations and the

analytical description of the motion of the satellite. How to trade these

factors depends upon the time allowed for deriving the orbit from obser-

vations.
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The analytical expression showing this interplay has been derived and

represents the natural starting point for (1) an accurate prediction

scheme and (2) updating or intermixing criteria.
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SYMBOLS USED f

p(t1 ) Range at time t.

A(t i )  Azimuth at time t.1

E(t i )  Elevation at time t.1 1

Site latitude

XSite longitude

i Time

(x, y, z) A geocentric coordinate represented vector

(x, y, z) in topocentric coordinates

r( t i ) A vector from earth's center to a point on orbit (at t.)

R Earth's radius

T2 Time increments

i( t i ) Rate of change of r(t.)

d i , Gi , H. Defined in text, functions of

s2 Defined in text
5

P Defined in text

U, V, W Defined in text (vectors)

a Semi-latus rectum of orbit

e Eccentricity of orbit

v True anomaly of orbit

a A vector, defined in text

w The angle of perigee

N, M Vectors defined in text

G Gravitational constant
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E Eccentric anomaly of orbit

T A constant of the orbit

0The angle of the ascending node

I The inclination of the orbit

I,J,K Unit vectors, defined in text

E(x) Tho expectation of X

i4 The "ith" moment of P about its mean, i=2, 3, 4
P
4The mean of P
P

a E( x-x) (y-y)
xy

'xyz E( x-x)(-Y)(-z)/x y z
Fxyzw Elx-x)(y-y) (z-z)(w -w) /axayaza

A, B Matrices, .,x3

a.. An element of A B

cxy E(x-x)(y-Y)

cxyz E(x-x)(y-Y)(z-Z)

C x E( x--)( y-Y) (z - )(w -- )
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APPENDIX A

POLAR VERSUS CARTESIAN SMOOTHING

Figure A-I is a rough graph of the fourth degree curve of best fit to ten

minutes of Millstone azimuth data. It is important to note that although

the observations cluster around a smooth curve, this curve differs con-

siderably from the fitting curve. This is because radar azimuth and ele-

vation, and to a lesser extent, range, do not behave like low order poly-

nomials for any length of time. To adequately represent the observations

by a fourth degree polynomial, it is necessary to restrict the data to a

much smaller interval, perhaps, one to two minutes. At the Millstone

repetition rate, this allows only ten to twenty pulses to be smoothed.

As it will be seen, a larger number of pulses is needed if the resulting

observational errors are to have any statistical meaning.

Although the radar coordinates do not behave like low order polynomials,

the cartesian inertial coordinates of the satellite do. The amount by

which these coordinates deviate from a polynomial of degree p, during

a time interval of length 2T is certainly less than the following expres-

sion:

(Dev) < VTrl(P+l)m

where r( p I ) is the p+l s t derivative of the geocentric position vector,

the double bars indicate its magnitude, and "max" refers to the maxi-

mum value of this magnitude over the time interval. Equation (A-I)

is an application of Taylor's theorem.
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I

by noting that (1) these quantities may be calculated without signi-

ficant error assuming a Keplerian ellipse, and (2) on this ellipse the

derivatives are maximized at perigee. The region of a-e space indicated

in the third column includes most reasonable and stable satellite orbits.

All formulas and numbers are in canonical units.

Table A-i

Magnitude of first few position derivatives is evaluated at perigee and

numerical bounds on these magnitudes.

r(p max over

a(l-e) > 1.05, e < 0.5

0 r a(l-e) cc

1 A r -0.5 1.2

2 r 0.9

3 +e r 51.0

4 (1+3e) r I2.0

5 \/I+c 1+9e) r -6.5 4.8

2 -8.

6 1+24e427e 2 ) r - 13.0
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The second or third column of Table A-1 may be used with Equation(A-i)

depending upon whether the orbital elements are approximately

known. Combining the third column with Equation (A-1), Table A-2

may be obtained. Table A-2 expresses the maximum values of the in-
th

tervals over which the inertial coordinates deviate from a p degree

polynomial by the given amounts.

Table A-2

2T versus p and (Dev)p

71
P (Dev)p <1.1km (Dev)p < 0.1 km (Dev)p< 0.01 km

0 0.205 sec 0.0205 sec 0. 00205 sec

1 29.9 sec 9.56 sec 2.99 sec

2 157.00 sec 72.90 sec 33.8 sec

3 334.00 sec 188.00 sec 106.00 sec

4 529.00 sec 334.00 sec 210.00 sec

5 726.00 sec 499.00 sec 337.00 sec

Table A-2 shows that, if a 0.1-km deviation in the fit can be accepted, a

fourth degree polynomial may be applied to 5-1/2 minutes of data.

Thus, the following procedure has been developed for the orbit removal

from Millstone radar.

(1) From each pass, select the middle seven minutes of data

(Dev 4 (7 min) < 0.35 km).

(2) Transform the ranges, azimuths, and elevations selected in

Step (1) to cartesian inertial coordinates by the well-known

transformatio,,.
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(3) Solve the three sets of likelihood equations for the selected

records of x, y, z.

(4) Use the solutions to the likelihood equations to evaluate the

fourth degree polynomials for x, y, z at all the tk points

selected in Step (1).

(5) Transform these polynomial points back to range, azimuth

and elevation and subtract them from the corresponding

observations.

One simplification of this scheme is possible. Step 2 may be replaced

by a transformation to the cartesian non-inertial coordinate system:

x = R sin E

y = R cos E sin A (A-2)

z = R cos E cos A

This procedure is simpler than the inertial transformation. The justi-

fication of this simplification is given by noting the relationship between

the usual inertial system and the system defined by equations (A-2) as

shown in Figure A-2. The inertial system has its origin at the earth's

center with a z-axis along the earth's north pole, an x-axis pointed to

the first point of Aries (7), and a y-axis completing the right-hand sys-

tem. The topocentric system has its origin at the position of the radar;

its x-axis points directly away from the earth's center; its z-axis points

in the direction of true north. Let the vector position of the satellite

in the two systems be r, and p, respectively, then the transformation

is obtained:

P = - r + ABr (A-3)

The matrices A and B and the vector e: are given by:
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A1 cosa 0 sina) "s sin0. A .-.,oo  0 _,c Bsn CS
0 1 0 0

(A-4)

In Equation (A-4), a is the declination of the observer, the P is his

right ascension at any time. By differentiating Equation (A-2):

(5) (5) (4) + (3) + 10AB(3)

p =ABr~ 5 + 5ABr~4 + 10Ar 3 +OA 3 ~

(A-5)

+ 5AB ( 4 ) r + AB (5 ) r

Noting that B is equal to P times a suborthogonal matrix (a rotation

plus a projection) then:

li 511 Ir(5)1 501 Ir (4)1 10 0 - J()

< 4.8 + 5(0. 0587) (2.0) + 10(0. 0587)? (1. 0) + . (A-6)

This is a somewhat conservative bound, probably 4.8 is more realistic.

In any case, a fourth degree polynomial fits the data equally well, regard-

less of whether the data are expressed in inertial or topocentric coordi-

nates.
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APPENDIX B

DISTORTION OF THE ERRORS

Since the polynomial coefficients estimated from a record are random

variables, the calculated values of the polynomials at each tk are also

random variables. If these values have standard deviations as large

as the deviations of the observations, the actual observational errors

will be masked. The deviations of the calculated values are calculated

here under two assumptions:

(1) at 2 6 That is, the data have no serial
() x( tn) x(tj) '2 C x jk*

correlation, and the same coordinate observed at different

times has the same variance.

(2) tk+1 = t k + -'. That is, the observations are equally spaced

in time.

Assumption (1) is not valid, for even if it were true of range, azimuth,

and elevation, it would not be true that the cartesian coordinates would

have constant variances. Assumption (2) is approximately satisfied

for any radar - in particular for Millstone, r" = 6 secondE.

Given assumption (1), Equation (B-1) for the covariance matrix of the

coefficients is valid (with aR replaced by ax,, a y or z Given assump-

tion (2), the sums in the matrix may be calculated in closed form, and

the matrix analytically inverted. The results of this inversion are

shown in Table B-i. The left-hand column is the degree of the polyno-

mial. The matrix on the right hand has a A t row and

thcolumn. The quantity T, as defined previously, in one-half the time
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interval, and the polynomial coefficients are evaluated at the time corres-

ponding to the midpoint of the interval.

(2 4>
(aA0 a A A N Etk Etk

A TAa ,.. 2AA .t. 2 5
AA A A Ek tk ZkI

0 1 1 2A4

a aa2 4 5 .. 6
KA0 A4  AIA4 • 4  \E

These covariance coefficients are obtained from the maximum likelihood

equation of observation that are random variables.

Table B-1

Approximate covariance matrix of midpoint polynomial coefficients ver-

sus degree of polynomial, as a function of number of points, N; half-

time interval, T; and variance of observations, a

P aAA

012

1 0

3 0 -5/T 2

- 0 4/T 0

2 -yq02 4-5/T 0 5/T
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Table B-1 (Continued)

3 3 0 -S/T 2 0

o 25/T 2 0 -35/T 4

-S/T 2 0 15/T 4 0

0 -35/T4 0 175/3T 6

502

4 45 0 -210/T 2  0 189/T 4

0 240/T 2  0 -336/T 4 0

-210/T 2 0 1764/T 4 0 -1890/T 6

0 -336/T 4 0 560/T 6 0

189/T 4  0 - 1890/T 6 0 2205/T 8

The data in Table B-I are inaccurate for N < - 20. For N> 20, they

are in excellent agreement with the true matrices.

From theme data, the variances of the polynomial points may be deter-

mined. For example, for the point:

x 4 (t) = A0 + A I t + A2 t 2 + A3 t 3 + A 4 t4  (B-2)

The variance is obtained by the formula:

t

x4 (t) ( t 2 t3 t4 ) at 2  (B-3)
x P) AA T3

t5
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as:

t - 2 t4 6-
a 2 3 5 4,.o6  + 1

Fr 4(t) IT + 171.95 (15)8

For polynomials of lower degree, expressions similar to Equation (B-4)

are found. These expressions are listed in Table B-2. In Figure B-1

the square roots of these expressions and the ratio of the corresponding

standard deviations are plotted for several degrees and several values

of N.

Table B-2

Ratio of variance of polynomial point to variance of observation,
2 la for various degrees of polynomial, p, as a function of N

7x (t) xp

and of the ratio of time from midpoint to half interval, K = t/T.

2 ,2

I ~x P t x

0 a 2/N

1 ac2/N ( 1+3K 2 )

2 V2/N ( 2.25-4K2+ ..25K4 )

3 a 2 /N ( 2. 25+11. 25K2-41. 25K 4+43.75K 6)

4 a 2/N (3.516-14. 064K 2+1 14. 844K 4 -251. 562K 6+71. 953K 8 )

Figure B-I indicates that with N=70 and fourth degree smoothing, up to

80 percent of the computed points have a standard deviation less than

one-quarter of the observation deviation; furthermore, at the extreme

5
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Figure B- 1. Ratio of standard deviation of estimated polynomial
point to standard deviation of observations, versus
ratio of time from midpoint to half interval, for
second, third, and fourth degree smoothing.



edges of the observation interval, this ratio is about three-fifths. How-

ever, since assumption (1) of the previous section - that the observa-

tion deviations in each coordinate are constant - is not true, the ratio

may be somewhat higher than this value. For this reason, it is con-

sidered advisable to chop off the errors at about 80 percent of the way

to the edges.

A smoothing procedure has thus been established to be applied to Mill-

stone data covering seven or more minutest

(1) Select the middle seven minutes of data.

(2) Transform range, azimuth and elevation to cartesian coordi-

nates by Equations (A-2).

(3) Find the coefficients of the fourth degree polynomials of closest

fit to the three records obtained in Step (2) by solving the likeli-

hood equations assuming observations are random variables.

(4) Evaluate the three polynomials found in Step (3) at each of the

71 time points selected in Step (1).

(5) Transform the polynomial points found in Step (4) to ranges,

azimuths and elevations by inverting Equations (A-2) and sub-

tract these values from the observed values of range, azimuth,

and elevation.

(6) Discard the first and last seven sets of differencesleaving 57

"range errors," 57 "azimuth errors, and 57 "elevation

errors,"

This procedure has been devised for Millstone data, which are availa-

ble at 6-.second intervals, and which have standard deviations of about

one to two kilometers. For different radars, a different procedure is

necessary, but the formulas, tables, and graphs presented here should

be sufficient to derive such a procedure. J
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APPENDIX C

CONFIDENCE BOUNDS FOR SAMPLE CORRELATION
COEFFICIENTS AS A TEST FOR RANDOMNESS

In order to determine a test of randomness for a set of samples, an

initial hypothesis p = 0 is taken. On the basis of the serial correla-

tions of the sample, a procedure for testing randomness by employing

the distribution function of the correlation coefficients is established.

A 90-percent confidence curve on the correlation coefficient is shown in

Figure C-1.

Given a sample of size m, it is desired to test the sample for random-

ness. One approach to this problem rests upon an examination of the

serial correlations. The serial correlation coefficient is given by

coy (x., X

rk= cv (x x k=0, 1, 2... (C-1)
[var x , var x3+k]

If the elements x, x j+k are separated into two groups, then the ele-

ments x. and xj+k can be considered as elements from separate sam-

ples, both samples being of the same size, n.

It: is now assumed that the population has a bivariate normal distribu-

tion. That is, the samples xj and xj+k can be considered as coming

from a bivariate normal population. The distribution function of r as

given in Ref. 8 is:
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1q"r)>= 1- [i "] --,! [j.r,] ,,-
q (n-/2 2.4~

(C-z)

x j2pr)'] ' [(n-I+k)/ , -1 < r < 1, p = Er

k=0

2 (I-p 2 )2

for large n, Er = p, ar n (C-3)

Tables of the distribution q(r) can be found in Ref. 9.

A test for randomness under the initial hypothesis is now considered.

For p = 0, q(r) reduces to

n-i (n- l

q(r) 2 r (!.r2) n-4 (C-4)

Solving this expression for r,

r = /i. [q7 q(r)[-Ij-)] (C5

For a given q( r), n, bounds can be established on r, r1 < r < r2 , in

order to test H0: p = 0 with any level of confidence. The bounds may

be rewritten as /r/< r1 since r can be seen to be symmetric about

zero,
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To use the tables in Ref. 9, values of p and n are needed. For a given

probability, a value of r can be determined. One such set of values is _

included in this report. These values are for a Two-Tailed Test of H 0

p = 0 with a probability of 0.90. The curve which follows the table is

merely a graphical representation of the results with only the upper

curve recorded since symmetry exists about zero.

For each serial correlation coefficient, the number of pairs of observa-

tions is plotted against r on the graph. If IrI falls under the curve, it

may be saidthat the sample is random with a probability of 0.90.
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CRITICAL VALUES OF 0 FOR 90 PERCENT
CONFIDENCE BOUNDS

n C, P = 0.05 17, P = 0.95

3 -0.975267 0.965267

4 -0.900 0.900
5 -0.805676 0.805676

6 -0.730231 0.730231
7 -0.670540 0.670540

8 -0.622746 0.622746

9 -0.583502 0.583502

10 -0.544231 0.544231

11 -0.522944 0.522944

12 -0.497620 0.497620

13 -0.477867 0.477867

14 -0.458413 0.458413

15 -0.441914 0.441914

16 -0.427845 0.427845

17 -0.413950 0.413950

18 -0.400026 0.400026

19 -0.390138 0.390138

20 -0.380474 0.380474

21 -0.370914 0.370914

22 -0.361411 0.361411

23 -0.351838 0.351838

24 -0.344748 0.344748

25 -0.338367 0.338367

50 -0.238043 0.238043

100 -0.170060 0.170060

200 -0.117231 0.117231

400 -0.083144 0.083144
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APPENDIX D

DERIVATION OF THE ORBITAL ELEMENTS

This appendix summarizes the equations needed to obtain the orbital

elements from observation data. The Herrick-Gibbs method is used in

determining the position vector and velocity vector of an observed satel-

lite.

D. 1 DETERMINATION OF INERTIAL COORDINATES

In general, the observations of a satellite are made with reference to a

given site of known latitude and longitude. To derive the orbit of this

satellite the observed positions of the satellites are referred to as a

geocentric inertial reference.

Let the earth's center be the origin of the geocentric inertial reference.

The axis of the earth represents one of the axis, Z, of the reference.

One of the axes. X, is in the equatorial plane and directed toward the

first point in Aries or vernal equinox; the other, Y, is also in the equa-

torial plane and orthogonal to X. Let X', Y', Z' denote a topocentric

reference system whose origin is the site. The X1 axis coincides with

the vertical through the site, Z' is the horizontal plane about the site and

directed toward the north, and Y' forms an orthogonal system.

Let 0 be the angular rate of the earth's rotation in radians per second

and let the earth be spherical of radius R. If X', Y', Z' is a point in

the topocentric reference and X, Y, Z is a point in the inertial reference

then:

621
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Cos X i X05co 
0 -sin e x

= sin X cos X 0 0 1 0 Y1
O 0 0 sin o cos zi

where 0 is the site latitude, X* is the site longitude and X* = X + b t.

If the observations of a satellite about the site S are range, p, elevation,

E, and azimuth, A,

x (iy psin E A

( y !t) p cos E sin A

P z' (t) p cos E cos

then the position of the satellite in the inertial coordinate is represented

by

(t I os X* -sin IX 0 cos 0 0 -sin (t )sinE(t )+R

r(t 1 ) Y(t = s X cos X 0 (0 1 0 p(t) cosE(t )sinA(t 1 )

(tl) 0 0 1 in 4 0 cos */\p(t1 )COsE(tl)cosA(tl)

where t I denotes the time of the observation

D. 2 DETERMINATION OF POSITION AND VELOCITY VECTOR

From observations through vector positions,r (tI), r (t 2 ), r (t 3 ) are

determined using the transformations in subsection D. 1. These posi-

tions are determined at approximately equal intervals of time. With

these vectors r (t 2 ) andLr(t 2 ) are derived using the Herrick-Gibbs

method.
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r(t 2 ) = r(t 2 )

"r(t 2 ) - -dr(t) +d rt ) +d 3 r(t 3 ) 7

where d =G + H (ti

and H= '2/12, H 2 = 2 - 71)/12, H3 = 1/12

GI , [r.1T2 i .2) -I. G_ (T2 _ . 2 ( .,r.+7.) I

G= 7 [,i 'a( 7 +72)] -1

where T I = t2 " tl and 'T2 t3 " t2

D. 3 DETERMINATION OF ORBITAL ELEMENTS

With the values of r (t 2 ) and "r (t 2 ) the orbital elements are determined

as follows:

2 -

r r r

5 r* r
U

r = r • rr

SU = rlrI -

r r-r r

- r 2 (i 2 - i Z

w! xv[4 !I
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1
1 1 2 .2

e2 r2 ;2 2)

2 r ( -

sin v _ rs

e cos v -

v tan-1 [ e sin vi

= U e cos v- V e sinJ

Uz e cos v- Vz e sinv

a =(- a WY + a Wx)/ W2T

ayn = ( -a x WxWZ - ay W W z a z

= tan-, u -- w + v
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U cos u - V sin ux x "

N= U cos u - V sin u
- y y

U cos u - V sin u

- U sin u + V cos u
x x

M= U sin u + V cos uy x

U sinu + V cos uz z

sin (V-E) 2 rG (e sin v) (e co + e in v

r I-(e sin v
cos(v-E) = 2 -- K 7 +ecoov"r r Z 1 ez

.,-(,, ,-i

v-I = tan" 1 Csin (v-'E)

• sin E r (t- T) E- e sinE

T= (E - e sin E) +t 2

6r
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I = tan-1 (1, 0, 0)

IF

I =tan - ] K =(0, 0,1)

Thus the six orbital elements are defined, namely

- [a, e, i, wt (?, TI
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APPENDIX E

THE MOMENTS OF PREDICTED POSITION ERROR
FROM MOMENTS OF ORBITAL ELEMENT ERRORS

This appendix presents the method for obtaining the statistics of the

error in the predicted position of a satellite as a function of the statis-

tics of the error in orbital elements.

E. 1 CALCULATION OF INERTIAL GEOCENTRIC COORDINATES
FROM ORBITAL PARAMETER-

E. 1. 1 STATEMENT OF THE PROBLEM

The determination of ephemeris of particular satellites from radar

data which are subject to various errors will give predicted parameters

subject to errors. The inputs are the orbital elements, which have as-

sumed moments and comoments. The geocentric and topocentric iner-

tial coordinates are then derived with their respective moment distribu-

tions. The initial orbital information was considered to be non-indepen-

dent data, and the analysis utilized the first four moments to derive

formulas for the corresponding moments of the geocentric inertial coor-

dinates. These formulas indicate the procedure for the computation

of such terms, but due to their length they were approximated to include

only powers of order < a2 as they appear in Equations E. 2. 12, E. 2. 13,

and E. 2. 14. The required partial differentials for substitution into

these equations were then derived. The geocentric inertial coordinates

are then transformed to topocentric coordinates and subsequently into

radar parameters. The process for the computation of these error

moments is an identical procedure as previously employed. The addi-

tional required partial differentials for the radar parameter computation

have also been evaluated.
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The calculation of the inertial geocentric coordinates from the orbital

elements assuming a Keplerian system, and no orbital errors are

outlined here. From the initial orbital elements (a, e, 0 T i

are geocentric inertial cartesian coordinates are derived. The "ox"

axis is assumed to point to the first point in Aries through the Greenwhich

meridian at time T o, the "oz" axis is through the north pole and "oy"

completes the right-handed system.

Assuming a Keplerian system the magnitude of the radius vector at any

given time T is given by

a (l-e Z(l.1)
r= + e cos v

where v is the true anamoly which is related to the eccentric anamoly

and time by

Cos cos E-e E (1.2)cos v= -e coo E

and
( - TO) = E - e sin E E (1.3)Ia

From Equation E. 1. 1 the geocentric inertial coordinates can be obtained

x = r (CoS aO cos (W0 +v) -sinQ 0 sin (w0 + v) coh i)

x=r (sin 0 coS(W +v)- cos a sin(W +v) cosi)

z= r (sin (wo+ v)sini)

E (1.4)

The ephemeris of the topocentric cartesian coordinates for a given

radar site at latitude # and logitude A 0 is given by

69



yi 0 1 0 n (w(t) + As), cos (W(t) + ),. O

sin# 0 cos 0 0 1 0

I~II
E (1. 5)

From the topocentric coordinates the radar look angles and ranges

are computed

P'2 '2 + '2p= +y 2+z

Az = tan (y'/z')

El = 1 VZ 42 'co +y E 0 .6)

E.2 ERROR ANALYSIS .

The geocentric inertial coordinates can be represented by a function of

6 orbital elements.

X h hi (W 2,W2 , W3 W4 ,W 5 ,W 6 ) E (2.1)

where:

x 1 =X

x 2 =Y

and

W =a

W2=

w 3 =i E (2. 2)

W4 0

W5 
o
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Equation E. 2. 1 is represented by a Taylor's series about the mean

value of the orbital elements.

xi I"6 ) +  E.h h' W a

+I 'haa W 2 + h'b WWb

Sa aabWa abc c

I2
+ Lh 1  W +1 Eh W Vw+ h' 2 2

+aa a 2 'aabca b 4 1-' abba b
1 1 ~ 2

2 hab a WbW + Lhabd WaWbWcWd

E (2.3)

where

h - h h (WIW 2 .. W E (2.4)
Wa Wb (0,O,...O)

and V implies the summation of all the different terms of the

form written after it, which can be obtained without identifying

subscripts (Ref. 11).

The original non-independent orbital elements are all subjected to

errors which are assumed to have certain distributions of which

their first four moments and their co-moments are known.

tI By definition a E[(Wa - Va)i]

a ab= E [(Wa -Wa) (Wb -Wrb)]

'Yabc E [(W a Wa) (Wb -Wb)(W c  ]
E (2. 5)

and rabc = [(a a )(Wb -Wb) (Wc W*)(Wd Wd)]
rbd=[(Wa -Va c d
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The first four moments of the inertial coordinates can now be formu- I
lated for the statistically non-independent case. The terms of order

a5 have been neglected.

average xi = h
i (WI... W6 )

aa a +  iab aaab

+ hi  a b a
aaaa aaaa a + aab "ab a

+ h abbla bc aaca b abcc

I hd r 4d
va4-iancaaaaa aaa + - h a aa b r aaab a a ab 

4h + aab a + h ab raab c  a a c
+ 4 baabb r a 2 b 2  a abc aa

+ !hi4* hi, 

+ Zh~abcd rabcd Oraa b hb bd b

5 m

+ terms of order ,a E (2. 6a) -

+ h i h i a h 3 + EIaaa aaa a +  al hbb 7abb ab

+ 2f hi h ia F 21 *h i h i

ab ab b a b + a bc 7abc abac

4 I haa - (raaaa-l , a4+ haa ( faabb-l) 'a Ob - -

N:ha ab Faab " Pab ) % %0' +E hia h c( raabc: "Pbc)  ab , 4

+ hab ( raabb "Pab)a b +  ab ac 'aab" Pab Pac' a
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+2 * h hd

ab cd (rab cd " PabPcd ) 'a 'b 'c 'd

+ .h' h' 4, ° +  * h h * r" 33+.h ahla +.aaa 'a 'S a bb rabbb 'a 'b

ha aab ba 7b ha abb aabb "a b

i*j 2 ~'*i2+ h h ib abb °ab q +2 h ha h b b 0 b o

+ 2 hi hi F a a c

a bcd abcd

+ terms of under oa
5  E (2.6b)

eke x. .h i3 0a3 .a2 .ha 2

= a 7aaa + 3 h hb 1 aab 7a ob

ha hc abc ab c+ haaa aaaa aa

+ 3 Z 2h2 2 +3Ei h *jjhi 03aa bb ( aabb-) Ora Gb + b ( aaab' Pab) ab

i2  2b I 1 2 23 ha hbc raabc-Pbc)aa b 7 +a h hhab (raabb Pab) a a a b

+6 h h - p c)G OGaCra ac (raabc "Pab ac

+6 . hi i hI h'

+6b cd (dabcd Pab Pcd) Oa b d6c)

+ terms of order >o5

elo x h1 i r -3) a
*1X*£.a aaaa a

+4 3 3 hi  3 p 3 + 6 Zhia2 hi22a b (Faaab- ab) qa b6 a b (Iaabb "Z Pab a b
] + 12 .*h i 2 hi hi  ra'Pc 2 ac

a b c ( raabc Pbc 2 Pab P 0a b

a+4* h h hd (hIabcd " ab Pcd "ac Pbd Pad Pbd aa % 7c 'ad

J + terms of order ;oa"73 E (Z. 6d)
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The co-moments for the non-independent case will result also in functions

of the original distribution moments of the orbital elements. This has

not been persued to the same extent as the variance, etc. , but only the

co-variance has been considered for powers of second order. A

sample derivation is indicated. Co-variance for non independent

variables is

Oxy = E ((x- ) (y- )) E(2.7)

where x, y are represented by a truncated Taylor series. .

x h (1...W 6 )+ Eh a (Wa -Wa)+ z.Zhaa (Wa -Wa)

+ E" hab (Wa -Wa) (Wb "Wb)

and
y ff9 ('l"" W6 ) + E ga (W a " Wa ) + 'Egaa (W a "a )  "

+ gab (W a "Wa) (Wb "Wb) E(2. 8)

From the equation E. 2. 8 the average values for x and y are

x h (W..W 6 )+I haaOa 2 + *h aboab

Y; g (WI... w 6) +' aa aa +  gab orab E(Z. 9)

therefore

xy = h('l ... V6) g (71I...W 6) + -Zh(W1. . . W6) gaa ra

+h (W1 ... W 6 ) Z* ga~b+ Wl"1~ha

+ h (71 ..W 6  9 b+1 *1**V6

+ g (Wh1 . VW6 ) h ab aab E(2. 10)

+ terms of order ;o 741
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E(xy) - h ( 1 ... 6) g (W...W6 ) + h ( 1 ... W 6 ), g. (Wa a)

T+  I * ( "6) Z gaa (Wa -Wa) 2 + h .. "6)*gab(WaVa) (WbWb)

i+g (WI +W6) L ha (Wa -. ) + 1 ha (Wa "Wa) .ga (Wa Wa)

+ Ig (W ... W6)ZEhaa (Wa 2- Wa)

2 as,(W a 1i + g (1-...6) h hab (W a " r) (Wb " b

ab a b b
.... 2

E(xy)= h (WI...W6) g (WI...W 6 ) + h (WI.. .W6)Zgaa aaa

+ h(Wh -26) gab Oa + a a +a 2 *hb

1 -6 aah a 2 +g(W 1 . .W) Z *h2"  1 6)' '  aa aa" ab 0a ab

E(2. 11)

Substitute equation E. 2. 11 and E. 2. 10 into equation E. 2.7 and thus

the co-variance becomes

a xy= Z aha a2 +2 * hagb crab E(2.12)

22
I + terms of order > cr

Considering only the powers of order < c2 the variance can be written

xx= aha2 a +2 h* hahb ab E(2. 13)

and the average x. = h (W I  W) + h * habab a b

E(2. 14)
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From equation E. 2. 12 and -2. 13 the variance and co-variance of the

geocentric inertial coordinates can be formulated.

"T

The moments for the topocentric coordinate at a particular radar site

are not computed from the known moments of the geocentric inertial

coordinates. The topocentric coordinates are expressed as a Taylor's

series about the mean value of the inertial coordinates.

- h ix=h i + ' h i W
xia a

+ hi  W 2+ L*hi W W
2 aa a aab ab E (2. 15)

The average, variance and co-variance of the topocentric co-ordinates

will be similar to those expressed in equations E. 2. 14, E. 2. 12, and

E. 2. 13. The final transformation is from these topocentric co-ordinates

to radar look angles and slant range as indicated by Equation E. 1. 6.

E. 3 EVALUATION OF PARTIAL DERIVATIVES FOR MOMENT
FORMULATION

The results of the partial derivative required for the formulation of

equation E. 2. 12, E. 2. 13, and E. 2. 14 will now be evaluated. As can

be seen from the lengthy nature of each of the partial differentiation

terms, the moments were not evaluated beyond terms requiring powers

of order greater than 2.

aX (1-Co3e sin v "+!a + e con v 2(1e) 2/ )' "~ a 0o-

(,r-)1 + e cosv) dA

a ( -er) 1 /  "
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exa 3 oo2 v (e coouv +4)coouv) A asinvie coomv+2) dA-a s(!+ecos v)

bx a(1 - e2 ) dA
iK- = +ecoov -

ax a( -e2  dA
- +e c-os v

ex a (I - e dAIF- =  + e coo v "

-~ (I - Z eF 2. A-( 1/e2 Ti

where A = cos e cos (wo + v) - sin 91 sin (W + v) cos i
0 0

a zeinS(I -e Z  3 e sin v
i"a = (T + e cos v) 2 2 1/ 2  (,r --ro ) . B

3 (1 + e cosovr dB
z 2(1- /e) 0/ r (,r- ro) ,

Fa conv - e 2 sinv2 ve 1) e cn BB
I + c(v I + e oo v))

a(I e 2 inv(ecoov+2) dB

( I + +e cos v)" W

OF a Q1- e•2  dB
+ ecoov) *"I

I



a(I I - •dB

-ae sin v a (f+ co a v) dBz 177-l i  B le z z ' TV-

where B =sin 1 cos ( + v) -cos 0 sin (w + v) cos i
0 0

S0 +e cos v) 2 (1 - e .I /  1 0

\+•co.v) (1 + e cos v) (+e•cos v)

aa

3a(1 + co v) dC

Bzr.,-. = 0,

1z e dc

2 ~~ 2d

= ± eosv d

2 (1-.) a

-= ( + + e co. v) + e-odT-. CsV

a I - e ) si/ v eco + ) d
. II+ cos v)"l =V

+ e co v; ) / T- ""

where C sin(w +v) Gini
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The ensuing partial derivatives are required for evaluation of the radar

parameters from the moment distribution of the topocentric co-ordinates.

Xi

P

I Z

y (zt) +(y,)

a El -

SEl x z

- 2 __-_ , + __ ,

These derivatives have to be substituted in equations (E. 2. 6) (E. 2. 12),

(E. 2. 13), (=. 2. 14) to get the statistics of the moments of the prediction

error.

I
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